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z-TRANSFORM METHODS FOR THE OPTIMAL DESIGN OF
ONE-DIMENSIONAL LAYERED ELASTIC MEDIA∗

ANI P. VELO† , GEORGE A. GAZONAS‡ , AND TAKANOBU AMEYA†

Abstract. In this work, we develop a finite trigonometric series representation for the stress in a
multilayered Goupillaud-type elastic strip subjected to transient Heaviside loading on one end while
the other end is held fixed. This representation is achieved by means of the z-transform method and
involves the so-called base angles. Generally, different layered designs could share the same set of base
angles, and the more layers the design has, the more base angles are expected. Necessary conditions
for the base angles and design parameters for any given design are described. As a result of the
stress representation, we are able to identify optimal layered designs which provide the smallest stress
amplitude. For two- and three-layered designs, for which the coefficients of the stress representation
are easy to find, the optimization results are achieved using a custom-made discrete optimization
technique applied in [A. P. Velo and G. A. Gazonas, Int. J. Solids Structures, 40 (2003), pp. 6417–
6428]. For other layered designs, the optimality conditions are predicted heuristically using pattern
recognition and the necessary conditions for the base angles and design parameters. Applications of
these optimization results include design improvement in making a nonoptimal design optimal. They
are also extended to non-Goupillaud-type layered media with integer layer length ratios. Our results
are supported by numerical experiments and provide means to validate numerical optimization codes.

Key words. Goupillaud-type layered media, transient loading, wave propagation, shock wave,
characteristic curves, palindromic polynomial, periodic optimization, validation of numerical codes

AMS subject classifications. 35A22, 35C05, 35L05, 35R05, 39A11, 49N20, 74P10

DOI. 10.1137/090751608

1. Introduction. In recent years, there has been a dramatic increase in the use
of multilayered structures in technologies that include microelectromechanical system
devices [2], [26], optical rattlers and etalons [20], [14], wide bandgap semiconductor
devices [36], laser devices [3], [35], [21], and metamaterials for use as possible cloaking
devices [8], to name a few. The optimal control of waves that propagate in such
multilayered devices is governed by hyperbolic partial differential equations using
distributed, boundary, interior pointwise, or other controls [24], [23], [22]. Despite the
widespread use of multilayered structures in such diverse technological applications,
exact analytical solutions to optimal design problems governed by the wave equation
(hyperbolic systems) are virtually nonexistent in the literature. This is in part due
to the fact that hyperbolic systems exhibit less regularity than parabolic systems
[23]. Such solutions are especially useful for benchmarking or validating optimization
codes which link formal nonlinear parameter estimation (optimization) algorithms
with explicit finite element numerical codes. This paper extends the work reported in
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work was performed in part by an employee of the U.S. Government or under U.S. Government
contract. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Copyright is owned by SIAM to the extent not limited by these rights.
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San Diego, CA 92110 (avelo@sandiego.edu, tameya@sandiego.edu).
‡Corresponding author. U.S. Army Research Laboratory, Weapons and Materials Research Di-

rectorate, Aberdeen Proving Ground, Aberdeen, MD 21005 (gazonas@arl.army.mil).

762



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

z-TRANSFORM METHODS FOR OPTIMAL DESIGN 763

[34], where a lengthier discussion of prior work can be found; the interested reader can
also consult the texts of [5], [27], and [4] for a geophysical perspective and analysis of
wave propagation in multilayered media; a good review of transient wave propagation
in layered media related to dispersion effects can be found in [33].

In this paper, we derive analytical optimal design solutions for stress wave prop-
agation in a Goupillaud-type [12] elastic strip with up to five layers; Goupillaud-type
layered elastic media have equal wave travel times in all layers. The elastic strip is
subjected to a Heaviside step in stress loading at one end with the other end held
fixed. Optimal designs are those designs which minimize the stress wave amplitude
in all layers, for all time. Exact analytical expressions for the transiently propagating
stress are found using the method of characteristics, which are generalized by writing
them as layer recursion relationships. Symbolic algebra software such as Maple or
Mathematica can be used to solve the layer recursion relationships in closed-form for
a system of up to three layers. Desktop computer memory requirements are exceeded,
however, for solutions in systems beyond the three-layer case, but the recurrence re-
lations can be simplified by hand calculation using z-transform methods [15], [9],
[25] and written in global matrix form [16]. Our global system of recursion relations
requires only m-layer equations, whereas Knopoff’s method requires (2m + 1)-layer
equations for scalar horizontally polarized shear waves [16], since we have summed up-
and down-going wave amplitudes prior to deriving the layer recursion relationships.
An excellent historical review can be found in [19], which compares Knopoff’s global
matrix method to the transfer matrix method [31], [13]. Our representation appears
to be new to the field of wave propagation in multilayered elastic media, despite the
long history of mathematical developments in the field and its connection to lattice
filter theory [28].

We also observe that the z-domain system determinant forms a palindromic poly-
nomial with real coefficients. The roots of this polynomial that lie on the unit circle
and satisfy the optimality conditions relate to a countable and infinite set of optimal
designs. A palindromic polynomial is equal to its reciprocal. A reciprocal charac-
teristic determinant was also derived by [7] using the transfer matrix formalism [31],
[13] for harmonic wave propagation in infinite layered elastic media. Reciprocal poly-
nomials are finding increasing applications in dynamics [29] and in pure and applied
mathematics [18], but we are not aware of any other work that relates them to the
optimal design of problems governed by hyperbolic field equations. In section 2, we
describe the general multilayered initial-boundary value problem that is to be solved
and its reduction to global matrix form using z-transforms; the determinant of the
global matrix is described by a palindromic polynomial in z. We assume that the
roots of the polynomial lie on the unit circle and therefore are uniquely determined
by their angle measure. In section 3, we describe two approaches to recovering nec-
essary conditions that such angles and suitable design parameters must satisfy. We
illustrate this using several examples. Optimal designs in multilayered elastic media
subjected to Heaviside loading are illustrated in section 4, followed by applications in
section 5.

2. Problem formulation, recursion relations, and solution using the z-
transform method. We consider one-dimensional wave propagation in an isotropic
multilayered elastic strip. As a generalization of [34], the strip is assumed to be of
finite length L and consisting of elastic layers of arbitrary length L1, L2, . . . , Lm so
that L1 + L2 + · · · + Lm = L. The strip is subjected to a Heaviside step in stress
loading p at time t = 0 on one end and held fixed on the other end. Similar analysis
may be extended to other initial and boundary conditions.
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764 A. P. VELO, G. A. GAZONAS, AND T. AMEYA

The density and elastic modulus along the strip are denoted by the piecewise
constant functions ρ(x) and E(x), taking values ρi and Ei in the ith layer, respectively,
i = 1, 2, . . . , m. In this work, we consider longitudinal elastic waves for a uniaxial
strain state; however, our results are also valid for the case of uniaxial stress. The
uniaxial strain elastic modulus E is related to the Young’s modulus Ē through the
expression E = Ē(1 − ν)/[(1 + ν)(1 − 2ν)], where ν is Poisson’s ratio. Using the
definition of the wave speed c = (E/ρ)1/2, we relate to each layer the wave speed ci

for i = 1, 2, . . . , m. The characteristic impedance in the ith layer is given as a product
of the material density ρi and wave speed ci, while αi, a design parameter, represents
the impedance ratio between layer i and i + 1 for i = 1, . . . , m − 1. The transit time
τ through the strip is given as

τ =
L1

c1
+

L2

c2
+ · · · + Lm

cm
.

Throughout this paper we assume a Goupillaud-type layered medium, which is a
medium that ensures the same wave travel time through each layer,

L1

c1
=

L2

c2
= · · · =

Lm

cm
=

τ

m
.(1)

This problem can be easily converted to the case of m layers, all of equal length and
wave speed of unity, by replacing the spatial variable x in the wave equation with
the new variable ξ =

∫ x

0
ds

c(s) and using condition (1). Here, c ≡ c(s) is the piecewise
constant wave speed function, taking values c1, c2, . . . , cm in each layer, respectively.
As a result, the wave equation becomes

ρi
∂2u

∂t2
=

1
ci

∂

∂ξ

(
Ei

ci

∂u

∂ξ

)
for

(i − 1)τ
m

< ξ <
iτ

m
, i = 1, . . . , m.

Furthermore the wave speed becomes the same (unity) in each layer (c = c1 = c2 =
· · · = cm = 1) and the initial-boundary value problem becomes⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2u(ξ,t)
∂t2 = ∂2u(ξ,t)

∂ξ2 for (i−1)τ
m < ξ < iτ

m , i = 1, . . . , m,

σ(0, t) = E1
∂u
∂ξ (0, t) = pH(t), u(τ, t) = 0,

u(ξ, 0) = ∂u
∂t (ξ, 0) = 0.

(2)

The functions u(x, t) and σ(x, t) represent the displacement and stress, respectively,
at (x, t), while H(t) represents the Heaviside function. As a result, as done in [34]
and without any loss of generality, the physical problem of the Goupillaud-type strip
with layers of unequal lengths becomes equivalent to solving (2) for a Goupillaud-type
strip of length L = τ and equal layer lengths of τ

m , as shown in Figure 1. The time
variable is represented on the vertical axis, where the (equal) wave travel time for
each layer of the m layered strip in either direction is τ

m . In Figure 1, the stress
jump-discontinuities, which we call a shock wave, are propagated along the dashed
characteristic lines of the wave equation, while the inner vertical solid lines represent
the layer interfaces. Due to the zero initial conditions, the stress values below the
first characteristic line segment with equation t = ξ for 0 < ξ < τ are zero. Above
it, however, the intersection of characteristics with each other and the boundaries
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Fig. 1. Lagrangian diagram for an elastic strip made of m layers of equal wave travel time.

splits the region into square-box subregions. Due to the continuity of stress and
displacement at each layer interface (discussed next), the stress value is constant in
each square-box and is represented by si(n), for i = 1, 2, . . . , m and n ≥ 1. Generally,
if σ+ represents the stress value ahead of the shock wave and σ− represents the stress
value behind the shock wave (see, e.g., [11]), then the stress jump is expressed as

[[σ]] = σ− − σ+,(3)

and [[σ]] = 0 for spatially continuous waves. Furthermore, when the shock wave
propagates from one layer to the next, we have that

[[σ]]T =
2

1 + α
[[σ]]I and [[σ]]R =

1 − α

1 + α
[[σ]]I .(4)

The subscripts refer to I (incident), T (transmitted), and R (reflected) wave. The
impedance ratio between the first and the second layers is represented by α. The
coefficients in (4) represent the reflection and transmission coefficients for the stress
wave, derived from the continuity conditions of the stress and displacement at the
layer interface; see [32]. Due to reflections at the layer interfaces and boundary, the
stress waves travel in both directions. These superposing waves interfere in accordance
with the principle of superposition. For an m-layered strip, due to the equal wave
travel time for each layer, the left and right propagating waves arrive/split at the
same time at the layer interfaces.

After applying (3), (4) and the principle of superposition at each layer interface
and boundary, we generalize the results for the two-layered strip studied in [34] and
derive the following system of coupled first order difference equations relating the
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stress terms in an m-layered strip:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(n + 1) = −s1(n) + 2α1
1+α1

s2(n) + 2
1+α1

p,

s2(n + 1) = −s2(n) + 2α2
1+α2

s3(n) + 2
1+α2

s1(n + 1),
. . .
si(n + 1) = −si(n) + 2αi

1+αi
si+1(n) + 2

1+αi
si−1(n + 1),

. . .

sm−1(n + 1) = −sm−1(n) + 2αm−1
1+αm−1

sm(n) + 2
1+αm−1

sm−2(n + 1),

sm(n + 1) = −sm(n) + 2sm−1(n + 1).

(5)

Here n ≥ 0 is a suitable time index, while si(0) = 0 for all 1 ≤ i ≤ m expresses the
zero-stress initial conditions. The nonnegative integer values of n ≥ 0 are used to
count the stress terms over time, as shown in Figure 1. The stress value is constant
within each box in Figure 1. The center of the square-box with the stress value si(n)
in Figure 1 is the point with coordinates ξ = i τ

m and t = (2n+ i−1) τ
m . As mentioned

before, the impedance in each layer is given as a product of the material density ρ
and wave speed c = 1, while αi represents the impedance ratio between layer i and
i + 1, for i = 1, . . . , m − 1.

Notice that in Figure 1 the values of the stress in each layer alternate between
the terms of two sequences. Starting from the left, the stress values in layer 1 are
p, s1(1), p, s1(2), p, s1(3), and so on. Similarly, the first few stress values in layer 2
are s1(1), s2(1), s1(2), s2(2), s1(3), s2(3). This is illustrated later with the graphs in
section 4. When positioned in the middle of the ith or (i + 1)th layer of an m-
layered strip, the time interval at which si(n) is reached is 4n+2i−3

2m < t < 4n+2i−1
2m ,

as depicted in Figures 2, 3, 7, and 8 below. Here n ≥ 1 and i = 0, 1, 2, . . . , m. When
i = 0, s0(n) = p represents the constant p-sequence taking values on the first layer
only, while when i = m, sm(n) represents the general term of the last sequence taking
values on the mth layer only.

As shown later, the system (5) of difference equations can be solved easily for a
small number of layers, 1 ≤ m ≤ 3, but it becomes quite involved for m ≥ 4. Applying
the z-transform to the system of difference equations (5) allows us to convert it into
an m × m linear algebraic system (6), which is easier to solve. Then, we use the
inverse z-transform to recover the formulas for the stress terms si(n), for i = 1, . . . , m
and n ≥ 0. As a result we provide a general representation (14)–(15) for the stress in
terms of the so-called base angles.

Indeed, due to the zero-stress initial conditions si(0) = 0 for all 1 ≤ i ≤ m, the
z-transform of si(n + 1) becomes

Z (si(n + 1)) = zSi(z) − zsi(0) = zSi(z),

where Si(z) is the z-transform of si(n). Thus the z-transform1 of (5) is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zS1(z) = −S1(z) + 2α1
1+α1

S2(z) + 2
1+α1

p · z
z−1 ,

zS2(z) = −S2(z) + 2α2
1+α2

S3(z) + 2
1+α2

zS1(z),
. . .
zSi(z) = −Si(z) + 2αi

1+αi
Si+1(z) + 2

1+αi
zSi−1(z),

. . .

zSm−1(z) = −Sm−1(z) + 2αm−1
1+αm−1

Sm(z) + 2
1+αm−1

zSm−2(z),
zSm(z) = −Sm(z) + 2zSm−1(z).

(6)

1The definition for the z-transform of g(n), n ≥ 0, is Z (g(n)) = G(z) =
∑∞

n=0 g(n)z−n for |z| >
R in the complex plane.
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After reorganizing the terms in (6), we write this linear system in the matrix-
vector form as

Am	xm = 	bm,(7)

where Am is a tridiagonal matrix given as

(8)

Am =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z + 1 −η1α1 0 · · · 0 0 0 0

−η2z z + 1 −η2α2 0 · · · 0 0 0

0 −η3z z + 1 −η3α3 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · 0 −ηm−1z z + 1 −ηm−1αm−1

0 0 0 · · · 0 0 −ηmz z + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×m

,

while

	xm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1(z)

S2(z)

...

Sm(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×1

, 	bm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1p · z
z−1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×1

, ηi =
2

1 + αi
for i = 1, . . . , m−1, ηm =2.

Due to the sparseness of 	bm, the solution of the linear system (7) is
(9)

	xm = A−1
m

	bm =
η1pz

(z − 1)|Am|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)1+1|A1,1|

(−1)1+2|A1,2|

...

(−1)1+m|A1,m|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
η1pz

(z − 1)|Am|

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|A1,1|

−|A1,2|

...

(−1)1+m|A1,m|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here |Am| is the determinant of Am, A1,j for j = 1, . . . , m are minors of Am, and
|A1,j | are their corresponding determinants.

One can derive by induction that the determinant |Am| is a palindromic polyno-
mial with real coefficients; i.e., the coefficients in front of zm−j and zj are real and
equal to each other for j = 0, . . . , m, and m ≥ 1. Furthermore, the algebraic structure
of the palindromic polynomials of even degree in (10) allows the inverse of a root to
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also be a root; i.e., if r is a root, then 1
r is also a root. Thus we have

(10)

|Am| =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zm + am,1z
m−1 + am,2z

m−2 + · · · + am, m
2 −1z

m
2 +1 + am, m

2
z

m
2

+ am, m
2 −1z

m
2 −1 + · · · + am,2z

2 + am,1z + 1 for m even,

(z + 1)
[
zm−1 + bm,1z

m−2 + · · · + bm, m−1
2 −1z

m−1
2 +1 + bm, m−1

2
z

m−1
2

+ bm, m−1
2 −1z

m−1
2 −1 + · · · + bm,2z

2 + bm,1z + 1
]

for m odd.

As a result we obtain

|Am| =

{ ∏�m
2 �

k=1 [z2 − (zk + z−1
k )z + 1] for m even,

(z + 1)
∏�m

2 �
k=1 [z2 − (zk + z−1

k )z + 1] for m odd.
(11)

The assumption that all the roots are on the unit circle implies that zk = eIθk =
cos θk + I sin θk and z−1

k = e−Iθk = cos θk − I sin θk for 1 ≤ k ≤ �m
2 � and I =

√−1.
This guarantees real coefficients for the polynomials in (11). This assumption is mo-
tivated by the fact that the homogeneous design solutions for the m-layer case all
lie on the unit circle (see subsection 4.4), and by the fact that all (optimal) design
solutions for the two- and three-layer cases, which are independently derived in sub-
sections 2.1–2.2, also lie on the unit circle. The work of [30] seems to be in favor of
this argument as well. After substituting the expression

zk + z−1
k = zk + z̄k = 2 cos θk

back into (11), we have a newly factored representation for the polynomial(s) with
real coefficients |Am| in terms of the angles θ1, θ2, . . . , θ�m

2 � as shown below:

|Am| =

{ ∏�m
2 �

k=1 [z2 − 2 cos(θk)z + 1] for m even,

(z + 1)
∏�m

2 �
k=1 [z2 − 2 cos(θk)z + 1] for m odd.

(12)

Based on the factorization of the determinant |Am|, for any m-layered design, when
there are m distinct roots on the unit circle there are m distinct angles: {±θk}

m
2

k=1

when m is even, and θ0 = π, {±θk}�
m
2 �

k=1 when m is odd. From now on, for an m-layered
design, the �m

2 � essential angles 0 < θk < π for k = 1, . . . , �m
2 � will be called the base

angles. Furthermore, since the degree of |Am| is m and the degree of |A1,i| is m − 1,
for i = 1, 2, . . . , m, the substitution of (12) into (9) allows the following expansion of
the components 	xm(i) of 	xm into partial fractions:

	xm(i) =
[
(−1)iη1|A1,i|
|Am|(z − 1)

]
· pz =

⎡
⎣ ai,0

z − 1
+

bi,0

z + 1
+

�m
2 �∑

k=1

a∗
i,k · z + b∗i,k

z2 − 2 cos(θk)z + 1

⎤
⎦ · pz,

where the coefficients bi,0 = 0 for even m and i = 1, 2, . . . , m.
Assuming that the so-called base angles 0 < θk < π for 1 ≤ k ≤ �m

2 � are distinct
and therefore correspond to distinct roots with sin θk �= 0, for all k = 1, . . . , �m

2 �, the
following choices for the coefficients,

ai,k = a∗
i,k, bi,k =

a∗
i,kcosθk + b∗i,k

sin θk
,
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allow the expansion of each component of the solution vector to be of the form
(13)

	xm(i) =

⎡
⎣ai,0 · z

z − 1
+

bi,0 · z

z + 1
+

�m
2 �∑

k=1

(
ai,k · z(z − cos θk)
z2 − 2 cos(θk)z + 1

+
bi,k · z sin θk

z2 − 2 cos(θk)z + 1

)⎤
⎦ · p.

In this paper we consider only stress solutions with their corresponding z-transforms
expressed by (13). Finally, after applying the inverse z-transform to (13), we obtain
solutions of (5) in the form of finite trigonometric series,

si(n) =

⎡
⎣ai,0 + bi,0(−1)n +

�m
2 �∑

k=1

ai,k cos (nθk) + bi,k sin (nθk)

⎤
⎦ · p,(14)

for i = 1, 2, . . .m, n ≥ 0, and as it follows from (5),⎧⎨
⎩

si(1) = 2i∏ i
j=1(1+αj)

p for i = 1, . . .m − 1,

sm(1) = 2m∏ (m−1)
j=1 (1+αj)

p.
(15)

As before, bi,0 = 0 for m even and i = 1, . . . , m. For a given design, the stress solutions
in (14) are bounded. The terms of the (trigonometric) sum that multiplies p in (14)
are expected to depend only on the impedance ratios α1, α2, . . . , αm−1, as these are
the only design parameters inherited from (8). As shown in the next sections, fewer
design parameters which are combinations of the impedance ratios become relevant for
the base angles and stress optimization in the m-layer case. Such design parameters
for an m-layered strip will be χm−1 =

∏m−1
j=1 (1+αi) for m ≥ 2 and Γm−1 for m = 4, 5,

defined later.
In summary, the stress terms for the m-layered Goupillaud-type media are ex-

pressed in the form of finite trigonometric series that involve multiples of �m
2 � base

angles denoted by θ1, θ2, . . . , θ�m
2 �. This also implies that the more layers the design

has, the more base angles are expected. According to the formula (14), each stress
term is a factor of the loading parameter p. This means that the value of each stress
term will increase/decrease as many times as the applied loading. These findings
match with the results given in the later subsections for the two- and three-layered
media, where only one base angle per design appears. Special values of this angle gen-
erate optimal designs. However, when m ≥ 4, more than one base angle is expected
to appear, and the process of explicitly finding the coefficients of the trigonometric
series in (14) becomes more complicated.

From (14) one can easily notice that if one stress sequence with nonzero coefficients
in front of the sine or cosine of each θk, k = 1, . . . , �m

2 �, is periodic, then all the stress
sequences derived for that design are periodic. The common period T is a positive
integer which satisfies the relation Tθk = 2πjk, for k = 1, 2, . . . , �m

2 �, where jk take
positive integer values in increasing order. When j1 = 1, the corresponding base
angle θ1 = 2π/T represents the circular frequency. In addition, for an odd number
of layers, the presence of (−1)n in the stress formulas implies that the period T is
an even positive integer. As seen later in section 4, periodic stress sequences are of
special importance, as they characterize optimal designs.

2.1. The two-layer case: Stress representation and periodicity. For the
two-layered strip with m = 2, one may solve system (5) of the difference equations
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directly or by means of symbolic algebra software such as Maple or Mathematica. As
a result, the stress terms can be represented in a form consistent with that shown in
(14), where the z-transform was used together with the assumption that the roots in
the z-space lie on the unit circle. The stress terms are expressed as follows:

(16)

⎧⎨
⎩

s1(n) = [ 1 − cosnθ1 ] · p,

s2(n) = [ 1 − cosnθ1 − 1√
χ1−1

sinnθ1 ] · p,
for n ≥ 1.

After a few mathematical manipulations one can also verify that these results are the
same as those given in [34]. Here the design parameter χ1 is given by χ1 = (α1 + 1),
while θ1 represents the (only) base angle. For χ1 > 2 and 0 < θ1 < π

2 , we have that
θ1 = arctan(2

√
χ1−1

χ1−2 ), and

χ1 =
2

1 − cosθ1
or, equivalently, cosθ1 =

χ1 − 2
χ1

=
α1 − 1
α1 + 1

.(17)

As seen later in section 4, χ1 > 2 is the reduced interval considered for stress
optimization, and the optimal designs are characterized by periodic solutions for the
stress sequences s1(n) and s2(n), n ≥ 0. Representation (16) is convenient for deriving
some key properties of such periodic solutions. We determine the (common) period
T using the fact that the sine and cosine functions are periodic with period 2π. Thus
we have cos[(n + T )θ] = cosnθ, which implies that Tθ = 2π. Considering the fact
that the common period T is some positive integer, the stress sequences are periodic
with respect to n ≥ 0 iff the base angle is expressed as

θ1 =
2π

T
, where T is a positive integer.

The base angle θ1 represents the circular frequency. As a result, for a given two-
layered design, if one sequence of the stress terms is periodic with respect to n, so is
the other stress sequence. When periodic, both sequences {sj(n)}, n ≥ 0, j = 1, 2,
share a common period and frequency. Each of the periodic stress solutions/sequences
can be represented in the form δ sin(nθ + φ) + γ and are therefore expected to have a
sinusoidal shape with T ≥ 2m = 4. Here δ, φ, and γ are constants and φ represents
the phase at n = 0.

2.2. The three-layer case: Stress representation and periodicity. Similar
to the two-layered strip, one may solve system (5) for the three-layer case with m = 3
and represent the stress terms in a form consistent with that shown in (14):
(18)⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

s1(n) =
[

1 − α2
χ2−1 (−1)n − α1+α1α2

χ2−1 cosnθ1

]
· p,

s2(n) =
[

1 − cosnθ1 + 1√
χ2−1

sin nθ1

]
· p,

s3(n) =
[

1 − 1
χ2−1 (−1)n − χ2−2

χ2−1 cosnθ1 + 2√
χ2−1

sinnθ1

]
· p,

for n ≥ 1.

Here the design parameter χ2 is given by χ2 = (α1 + 1)(α2 + 1) > 1, while θ1

represents the (only) base angle. As before, for χ2 > 2 and 0 < θ1 < π
2 , we have that
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θ1 = arctan(2
√

χ2−1
χ2−2 ). As a result,

χ2 =
2

1 − cosθ1
or, equivalently, cosθ1 =

χ2 − 2
χ2

.(19)

Relation (19) suggests that different designs with the same value of χ2 share the same
base angle θ1. In other words, different layered designs can share the same set of base
angles.

As seen later in section 4 and similar to the two-layer case, periodic solutions for
the stress sequences s1(n), s2(n), and s3(n), n ≥ 0, characterize three-layered optimal
designs. The presence of the term (−1)n in the stress formulas for an odd number of
layers implies that when m = 3 the common period T must be an even number, i.e.,
that T = 2l, for l ≥ 3. As in the two-layer case, the stress sequences are periodic with
respect to n ≥ 0 iff the base angle is expressed as

θ1 =
2π

T
, where T is a positive even integer.

The base angle θ1 represents the circular frequency. For a given three-layered design,
if one sequence of the stress terms is periodic with respect to n, so are the other two.
As seen later in section 4, when periodic, all sequences {sj(n)}, n ≥ 0, j = 1, 2, 3,
share a common period and frequency.

3. Necessary conditions for the base angles and design parameters. As
discussed in the previous section, an m-layered Goupillaud-type design has �m

2 � dis-
tinct base angles, 0 < θ1, θ2, . . . , θ�m

2 � < π. In this section we describe two approaches
that reveal necessary conditions which the base angles and suitable design parameters
must satisfy for any given design.

3.1. Approach 1: Testing the stress representation. The stress represen-
tation formulas (14) must satisfy the recursive relations (5) for all n ≥ 0. Ultimately,
this test will reveal condition (25) that each base angle has to satisfy. Developing
condition (25) will allow us to relate each base angle with suitable design parameters.

Indeed, after substituting back the stress expressions (14) into (5), regrouping the
terms, and using the trigonometric sum formulas

cos(n + 1)θ = cosnθ cos θ − sin nθ sin θ

and

sin(n + 1)θ = sin nθ cos θ + cosnθ sin θ,

we obtain the equations that follow.
The first recursive relation in (5) becomes

2
[
a1,0 − α1

1 + α1
· a2,0 − 1

1 + α1

]
− 2α1

1 + α1
(−1)n · b2,0

+
�m

2 �∑
k=1

[
(cos θk + 1) · a1,k + sin θk · b1,k − 2α1

1 + α1
· a2,k

]
· cosnθk(20)

+
�m

2 �∑
k=1

[
− sin θk · a1,k + (1 + cos θk) · b1,k − 2α1

1 + α1
· b2,k

]
· sin nθk = 0.
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The ith recursive relation in (5), for i = 2, 3, . . . , m − 1, becomes

2
[
− 1

1 + αi
· ai−1,0 + ai,0 − αi

1 + αi
· ai+1,0

]
+

2(−1)n

1 + αi
[ bi−1,0 − αi · bi+1,0 ]

+
�m

2 �∑
k=1

[
− 2

1 + αi
cos θk · ai−1,k − 2

1 + αi
sin θk · bi−1,k

+ (cos θk + 1) · ai,k + sin θk · bi,k − 2αi

1 + αi
· ai+1,k

]
· cosnθk(21)

+
�m

2 �∑
k=1

[
− 2

1 + αi
sin θk · ai−1,k − 2

1 + αi
cos θk · bi−1,k − sin θk · ai,k

+ (1 + cos θk) · bi,k − 2α1

1 + α1
· bi+1,k

]
· sin nθk = 0,

and the last recursive relation in (5) becomes

2[ −am−1,0 + am,0 ] + 2(−1)n · bm−1,0

+
�m

2 �∑
k=1

[ −2 cos θk · am−1,k − 2 sin θk · bm−1,k

+(cos θk + 1) · am,k + sin θk · bm,k ] · cosnθk(22)

+
�m

2 �∑
k=1

[ 2 sin θk · am−1,k − 2 cos θk · bm−1,k − sin θk · am,k

+(1 + cos θk) · bm,k ] · sin nθk = 0.

Considering the fact that the sums above must equal zero for all values of n ≥ 0 and for
all the base angles θ1, θ2, . . . , θ�m

2 �, we require that the combination of the free terms,
the terms multiplying cosnθk, and sinnθk equal zero separately. One can easily check
that the coefficients in (16) and (18) for the two- and three-layer cases, respectively,
satisfy these proposed conditions. The zero-conditions involving the terms multiplying
cosnθk and sinnθk imply that for any base angle θk, k = 1, . . . , �m

2 �, represented by
θ below, we have

(23) Dm	v = 	0,

where

Dm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F B1 0 . . . . . . 0
C2 F B2 0 . . . . . . 0
0 C3 F B3 0 . . . . . . 0

. . . . . . . . .
0 . . . . . . 0 Ci F Bi 0 . . . . . . 0

. . . . . . . . . 0
0 . . . . . . 0 Cm−1 F Bm−1

0 . . . . . . 0 Cm F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×2m

,
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(24)

	v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak,1

bk,1

ak,2

bk,2

ak,3

bk,3

...
ak,i

bk,i

...
ak,m−1

bk,m−1

ak,m

bk,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2m×1

,

F =
[

1 + cos θ sinθ
−sinθ (1 + cos θ)

]
2×2

, |F | = 2(1 + cos θ),

Bi =
[ − 2αi

1+αi
0

0 − 2αi

1+αi

]
2×2

=
4α2

i

(1 + αi)2
I, |Bi| =

4α2
i

(1 + αi)2
,

Ci =
[ − 2

1+αi
cos θ − 2

1+αi
sinθ

2
1+αi

sinθ − 2
1+αi

cos θ

]
2×2

=
4

(1 + αi)2
RT ,

|Ci| =
4

(1 + αi)2
, 1 ≤ i ≤ m − 1,

Cm =
[ −2 cos θ −2sinθ

2sinθ −2 cos θ

]
2×2

= 4RT , |Cm| = 4.

Here I represents the 2 × 2 identity matrix, while RT represents the transpose
of the rotation matrix R =

[
cos θ − sin θ
sin θ cos θ

]
. The determinant of the matrix Dm for

m = 2, 3 can be easily calculated using Laplace’s theorem.
The nonzero vector 	v of stress coefficients in (23)–(24) demands that

|Dm| = 0,(25)

a condition which reveals a necessary relationship of each base angle with suitable
design parameters. Below we demonstrate how this approach works for the three-
layer case with m = 3. Indeed, condition (25) implies that |D3| = 0 or equivalently
that

cos(θ1) = −1 or [ χ2 cos θ1 − (χ2 − 2) ]2 = 0.

Besides θ1 = π, we also derive the double root

cos θ1 =
χ2 − 2

χ2
,

previously obtained in (19) from the known stress solutions.
In conclusion, (25) with Dm described in (24) displays necessary conditions that

each base angle and relevant design parameter(s) must satisfy for the m-layer case.
Solving (25) for large values of m can be a computational challenge. This approach
does not directly display the relations among the base angles except for the fact that
they all satisfy the same condition (25).

3.2. Approach 2: Relating the coefficients of the palindromic polyno-
mials with their roots in the z-space. The same necessary conditions for the
base angles and design parameters discussed in the previous subsection can also be
derived by relating the coefficients of the palindromic polynomial |Am| with its roots;
see (10), (11), and (12). Below we illustrate how this approach works using a few
cases.

The three-layer case (m = 3). Based on (10), (11), and (12) there are two different
ways to represent the determinant |A3|,

|A3| = (z + 1) ·
[
z2 − 2(χ2 − 2)

χ2
z + 1

]
(see (45))
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and

|A3| = (z + 1)(z − eiθ1)(z − e−iθ1) = (z + 1)(z2 − 2 cos θ1z + 1).

After matching the coefficients in front of equal powers of z or using Vieta’s theorem,
we obtain that

cos θ1 =
χ2 − 2

χ2
.

This is the same necessary condition derived in the previous subsection as well as in
(19) from the known stress solutions.

The four-layer case (m = 4). Similarly, the two different representations of the
determinant

|A4| = z4 − 4(−1 + α1α3)
(1 + α1)(1 + α2)(1 + α3)

z3 + 2
(
−1 +

4(1 + α1α3)
(1 + α1)(1 + α2)(1 + α3)

)
z2

− 4(−1 + α1α3)
(1 + α1)(1 + α2)(1 + α3)

z + 1 (see (45))

and

|A4| = (z − eiθ1)(z − e−iθ1)(z + eiθ2)(z − eiθ2)
= (z2 − 2z cos θ1 + 1)(z2 − 2z cos θ2 + 1)
= z4 − 2(cos θ1 + cos θ2)z3 + 2(1 + 2 cos θ1 cos θ2)z2 − 2(cos θ1 + cos θ2)z + 1

imply the following necessary conditions between the cosines of the two base angles
θ1, θ2 and design parameters χ3 and Γ3:⎧⎨

⎩
cos θ1 + cos θ2 = 2Γ3

χ3
,

cos θ1 · cos θ2 = 2Γ3−χ3+4
χ3

.

(26)

Here χ3 = (1 + α1)(1 + α2)(1 + α3) and Γ3 = (α1α3 − 1) represent the only two rele-
vant design parameters. Relations (26) also imply that cos θ1,2 satisfy the quadratic
equation

χ3 cos2 θ − 2Γ3 cos θ + (2Γ3 − χ3 + 4) = 0.(27)

For the special case of a homogeneous design (α1 = α2 = α3 = 1) we have that
χ3 = 8 and Γ3 = 0. Substituting these values into the quadratic equation (27), we
find that the corresponding base angles 0 < θ1 = π

4 , θ2 = 3π
4 < π, satisfy 2cos(θ) =

z + 1
z = ± 2√

2
. This matches with the regular distribution patterns for the optimal

angles discussed in subsection 4.4. A mapping that takes the unit circle to the real
interval [−2, 2], which expresses the range of values of 2cos(θ), is discussed in [6]. This
is accompanied by a size reduction from a fourth order polynomial to a quadratic. In
our case, the fourth order polynomial |A4| in z (see (45)) is replaced by the quadratic
polynomial (27) for cosθ. Notice that although a four-layer design has three impedance
ratios, based on (26) there are only two relevant design parameters χ3 and Γ3 obtained
as special combinations of these impedance ratios. The number (two) of the relevant
design parameters appears to equal the number of the base angles.
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The five-layer case (m = 5). Similar to the four-layer case, one may obtain
the following relations between the cosines of the two base angles θ1, θ2 and design
parameters χ4 and Γ4: {

cos θ1 + cos θ2 = 2Γ4
χ4

,

cos θ1 · cos θ2 = 2Γ4−χ4+4
χ4

.
(28)

Here χ4 = (1 + α1)(1 + α2)(1 + α3)(1 + α4) and Γ4 = (α1α3α4 + α1α2α4 + α1α4 +
α2α4 + α1α3 − 1) represent the only two relevant design parameters. The solutions
cos θ1,2 of (28) satisfy the quadratic equation

χ4 cos2 θ − 2Γ4 cos θ + (2Γ4 − χ4 + 4) = 0.(29)

For the special case of a homogeneous design (α1 = α2 = α3 = α4 = 1) we have
that χ4 = 16 and Γ4 = 4. Substituting these values into the quadratic equation (29),
we find that the corresponding base angles 0 < θ1, θ2 < π relate to the golden ratio
w2 − w − 1 = 0, where w = 2cos(θ) = z + 1

z = 1±√
5

2 . This further implies that
θ1 = π

5 and θ2 = 3π
5 , which matches the regular distribution patterns for the optimal

angles discussed in subsection 4.4. Although a five-layer design has four impedance
ratios, (28) suggests that there are only two relevant design parameters. Generally,
an m-layered design with (m − 1) impedance ratios is expected to have �m

2 � distinct
base angles and the same number of relevant design parameters. Notice the similar
form of (26)–(28), (27)–(29), |A2| with |A3|, and |A4| with |A5| in (45).

In summary, this approach provides the framework on how to recover necessary
conditions for the base angle(s) and design parameter(s) for any given design, by
displaying at the same time relations among the base angles themselves. However,
applying this approach for a large number m of layers poses a computational challenge.
Furthermore, a general pattern for the m-layer case is not easily recognized as it
previously was in Approach 1, when Dm was described in (24).

4. Optimization results. Previously in (14)–(15) we described a finite trigono-
metric series representation for the stress in an elastic strip of m layers subjected to
the Heaviside step in stress loading p at time t = 0 on one end and held fixed on the
other end. We also discussed necessary conditions that the base angles and suitable
design parameters must satisfy for a given m-layered design. Here we study optimal
designs which provide the smallest stress amplitude throughout the strip for all time.
These designs, besides the necessary conditions, will require additional conditions for
the base angles and suitable design parameters to satisfy. In this section, we derive
optimality conditions mainly for designs with a low number of layers. We know from
(14) that

si(n) = si(n, p, 	ηm)

for i = 1, 2, . . . , m, where 	ηm = (α1, α2, . . . , αm−1). As a result, we formulate our
optimal design problem as

inf
	ηm

sup
1≤n<+∞

[p , s1(n, p, 	ηm), s2(n, p, 	ηm), . . . , sm(n, p, 	ηm)].(30)

Considering the fact that one end of the strip is subjected to the loading p and that
the homogeneous design (α1 = α2 = · · · = αm−1 = 1) reaches the stress amplitude
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Fig. 2. Stress time history at the middle of a homogeneous elastic strip, with a stress amplitude
of double the loading p = 1.

of 2p (see Figure 2), the following trivial upper and lower bounds can be obtained by
inspection:

p ≤ inf
	ηm

sup
1≤n<+∞

[p , s1(n, p, 	ηm), s2(n, p, 	ηm), . . . , sm(n, p, 	ηm)] ≤ 2p.(31)

The time domain solutions shown in Figure 2 are found by numerical inversion of
the Laplace transform using the Dubner–Abate–Crump (DAC) algorithm described
by [10]. The effects of Gibbs’ phenomena are mitigated using the so-called Lanczos
σ-factors with 512 terms and a tolerance equal to 10−3; see [17].

Furthermore, based on the value of the upper bound given in (31), the designs
with χm−1 = (1+α1)(1+α2) · · · (1+αm−1) < 2m−1 can never be optimal. This is due
to the fact that the first transmitted stress wave (see (15)), after going through m−1
layer interfaces and reflecting at the fixed boundary, reaches the value of sm(1) =
sm(n = 1, 	ηm, p) = 2m

χm−1
p, which is greater than 2p for χm−1 < 2m−1. From this

observation, our optimization problem (30) for the m-layer case equivalently reduces
to

inf
	ηm, χm−1≥2m−1

sup
1≤n<+∞

[p, s1(n, p, 	ηm), s2(n, p, 	ηm), . . . , sm(n, p, 	ηm)].(32)

The first optimization results for this problem were obtained by [34] for the two-
layer case with m = 2, where the class of optimal designs was identified. In the next
subsections we will revisit these results using the stress representation (14)–(15) and
discover similar optimality conditions for the media with low number of layers.

4.1. The two-layer case: Periodic optimal solutions. Based on the re-
sults of [34] for the two-layer case, the optimal designs are characterized by a stress
amplitude of 2p and optimal values of the base angle θ1,opt given by

(33) θ1,opt =
π

j
, j = 2, 3, 4, . . . .

Substituting into (17), the corresponding optimal design parameter is

(34) χ1,opt =
2

1 − cos(θ1,opt)
=

2
1 − cos π

j

, j = 2, 3, 4, . . . ,
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Table 4.1

Numerical values of the optimal base angle and design parameter for the two-layer case.

j 2 3 4 5 6 7 8 9
θ1,opt π/2 π/3 π/4 π/5 π/6 π/7 π/8 π/9

χ1,opt (from (34)) 2 4 6.828 10.472 14.928 20.196 26.274 33.163
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Fig. 3. Stress time history for a two-layered optimal design. Here the maximum stress ampli-
tude is double the loading p = 1, while j = 3 and χ1,opt = 2

(1−cos( π
j
)

= 4 or α1,opt = 3. (a) Middle

of the first layer located at ξ = τ/4. (b) Middle of the second layer located at ξ = 3τ/4.

where χ1,opt = 1 + α1,opt and α1,opt represents the impedance ratio of the optimal
two-layered design. Notice that the class of optimal designs includes the homogeneous
design obtained for j = 2, θ1,opt = π/2, and χ1,opt = 2. These optimality results
are given in [34], and the first few values are displayed in Table 4.1. Based on the
discussion in subsection 2.1, the values of the optimal base angle in (33) imply that the
stress sequences si(n), for a given i = 1, 2, are periodic functions with respect to n ≥ 0.
They share the same period 2j and circular frequency π/j, for j = 2, 3, 4, . . . . For
example, when j = 3 the period is expected to be 2·3 = 6. Figures 3(a) and (b) confirm
this expectation. The presence of only one base angle allows the stress sequences in
(16) to be represented as a sinusoidal function of the form δisin(nθ1+φi)+γi, i = 1, 2.
Here φi represents the phase at n = 0, while δi, φi, and γi are constants, i = 1, 2.
This explains the sinusoidal shape as well as the values for the period observed in the
stress history graphs displayed in Figures 3(a)–(b) and in [34]. However, as shown by
a counterexample in [34], not every design with periodic stress sequences is optimal.

4.2. The three-layer case: Periodic optimal solutions. Based on (18),
the only design parameter that affects the stress values in the three-layer case is
χ2 = (1 + α1)(1 + α2). As a result in (32),

si(n) = si(n, p, 	η3) = si(n, p, χ2)

for i = 1, 2, 3 and 	η3 = (α1, α2). Since the number of layers is odd (m = 3), the stress
terms in (18) also involve (−1)n in addition to the linear combinations of sines and
cosines; see (14)–(15). Knowing the stress terms, we find the optimality conditions
for the three-layer case by using the same discrete optimization technique introduced
by [34] for the two-layer case. Such optimality conditions imply optimal choices for
the base angle θ1 as well as design parameter χ2. Indeed, for a given χ2 > 23−1 = 4
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Fig. 4. Maximum value of the stress terms s1(n) for 0 ≤ n ≤ 300 versus the design parameter
χ2 = (1 + α1)(1 + α2). The loading p = 1 while 0 < α1 and α2 < (

√
21 − 1) are incremented by

0.005.

as stated in (32), one can derive analytically from the first equation of (18) that

0 ≤ s1(n) = s1(n, p, χ2) ≤ 2p for all n ≥ 0.(35)

This is illustrated in Figure 4. Similar to [34], from the second equation of (18) one can
show that for any given three-layered design with χ2 ≥ 2m−1 = 23−1 = 22 there exists
some value of n for which s2(n) = s2(n, p, χ2) ≥ 2p. From there one can derive that
the designs with max1≤n≤∞ s2(n, p, χ2) = 2p satisfy

√
χ2 − 1 = tan nθ1/2 in addition

to the necessary condition θ1 = arctan(2
√

χ2−1
χ2−2 ) previously shown in subsection 2.2.

This requires that nθ1 = (2i+1)π for all i ≥ 0, which further implies that the designs
with

max
0≤n<+∞

s2(n, p, χ2) = 2p(36)

are characterized by the following parameters:
(37)

θ1 =
π

j
, or equivalently χ2 =

2
1 − cos(θ1)

=
2

1 − cos(π
j )

, for j = 2, 3, 4, 5, . . . ,∞.

Figure 5(a) confirms these results, where the only three-layered designs that satisfy
(36) have their values of χ2 given by (37) for j = 2, 3, . . . , 7.

Finally, after a similar analysis of s3(n) = s3(n, p, χ2) terms in the third equation
of (18), due to the presence of (−1)n in their formulas, the sequence of optimal designs
with the smallest stress amplitude of 2p remains to be the odd subsequence of (37).
As illustrated in Figure 5(b), the only three-layered designs with

max
0≤n<+∞

s3(n, p, χ2) = 2p(38)

have their values of χ2 given by (37) for j = 3, 5, 7.
Putting together (35)–(38), for the three-layered elastic strip we identify the op-

timal base angles,

(39) θ1,opt =
π

j
, j = 3, 5, 7, . . . ,
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(a) (b)

Fig. 5. Maximum value of the stress terms for 0 ≤ n ≤ 300 versus the design parameter
χ2 = (1 + α1)(1 + α2). The loading p = 1 while 0 < α1 and α2 < (

√
21 − 1) are incremented by

0.005. (a) The sequence s2(n). (b) The sequence s3(n).

and after substituting into (19), their corresponding optimal design parameters,

(40) χ2,opt =
2

1 − cos(θ1,opt)
=

2
1 − cos π

j

, j = 3, 5, 7, . . . .

These designs provide the smallest stress amplitude of 2p for the three-layered elastic
strip and include the homogeneous design obtained for the first value of j = 3. As
expected, χ2,opt ≥ 2m−1 = 23−1 = 22 = χ2,homog, where χ2,homog = (1+α1)(1+α2) =
(1 + 1)(1 + 1) = 22 corresponds to the homogeneous design. Different designs with
the same χ2,opt share the same base angle. In other words, different layered designs
can share the same set of optimal base angles. The first few numerical values of
χ2,opt are given in Table 4.2. Figures 5(a) and (b) have these values in common. It is
important to notice that one can have infinitely many designs for the same value of χ2.
Figure 6 displays curves obtained for the first few optimal values of χ2, representing
optimal values for the pairs (α1, α2). The first curve with χ2,opt = 4 includes the
homogeneous design with α1 = α2 = 1. All the curves are symmetric with respect to
the line α2 = α1; see subsection 5.1 for further discussion.

Table 4.2

Numerical values of the optimal base angle and design parameter for the three-layer case.

j 3 5 7 9
θ1,opt π/3 π/5 π/7 π/9

χ2,opt (from (40)) 4 10.472 20.196 33.163

Based on the discussion in subsection 2.2, the values of the optimal base angle in
(39) imply that the stress sequences si(n), for a given i = 1, 2, 3, are periodic functions
with respect to n ≥ 0. Due to the fact that we have an odd number of layers (m = 3),
the stress sequences share a common period which is an even integer 2j. For example,
when j = 5, the period is expected to be 2 · 5 = 10. Figures 7(a) and (b) confirm this
expectation because they display ten terms of each stress sequence before the pattern
repeats itself. One can also check by substituting into (18) that the stress sequences
reach the maximum amplitude of 2p at half the period when nθ1,opt = π. As a result,
the larger the odd values of j, the bigger the delay on the stress amplitude.
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Fig. 6. Curves with equation (1 + α1)(1 + α2) = χ2,opt, generated for the first few values of
χ2,opt and representing optimal three-layered designs.
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Fig. 7. Stress time history for the first two layers of a three-layered optimal design. Here
the maximum stress amplitude is double the loading p=1, while j = 5, χ2,opt = 2

(1−cos( π
j
)
, and

α1,opt = 5. (a) Middle of the first layer located at ξ = τ/6. (b) Middle of the second layer located
at ξ = τ/2.

4.3. The four-layer case: Periodic solutions with amplitude 2p. Heuris-
tic optimization approach. For the case of four or more layers, the process of
solving (5), which involves finding the coefficients in the trigonometric stress repre-
sentation (14), becomes computationally challenging. Therefore, in the absence of the
values of such coefficients, we will try to identify designs with the largest amplitude of
2p using the necessary conditions (26) derived from the z-space in section 3. However,
we will no longer be able to rigorously prove as before that such designs are optimal.

We begin by using the necessary condition (26) for the base angles and suitable
design parameters for the four-layer case. Our heuristic optimization approach in
identifying designs with amplitude 2p is based on two facts:

1. The homogeneous design (α1 = α2 = α3 = 1) has a maximum ampli-
tude of 2p and therefore is expected to be optimal just like in the two- and
three-layer cases. This fact motivates us to substitute in (26.1) relation
Γ3 = α1α3 − 1 = 0 , which holds true for a homogeneous design and implies
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the following (optimal) condition between the two base angles:

cos θ1 = − cos θ2.(41)

Substituting back into the second equation of (26) gives

χ3 =
22

sin2 θ1

=
23

1 − cos(2θ1)
=

23

1 − cos(θ̃)
,(42)

where 0 < θ̃ = 2θ1 ≤ π
2 and χ3 = (1 + α1)(1 + α2)(1 + α3).

2. The two-layer case is a special case of the four-layer case with α1 = α3 = 1;
therefore we can apply the optimality results for the two-layer case, given in
(34), to the four-layer problem. As a result, putting together (34) and (42)
after substituting α1 = α3 = 1, we obtain

1 + α2,opt =
2

1 − cos(2θ1)
=

2
1 − cos(π

j )
.

This suggests the following optimal values for the base angle θ1,

θ1,opt =
π

2j
, where j = 2, 3, 4, . . . ,(43)

and the following optimal design parameters,{
χ3,opt = 23

1−cos( π
j ) , j = 2, 3, 4, . . . ,

Γ3,opt = 0.
(44)

As before, χ3 = (1 + α1)(1 + α2)(1 + α3), Γ3 = α1 · α3 − 1, and α1, α2, α3 > 0.
The designs described in (44) are tested through numerical experiments which have
confirmed the stress amplitude of 2p. Such (optimal) designs have only one essential
base angle given in (43), as the second base angle can be obtained from relation (41).
Unlike the two- and three-layer cases, the conditions (44) are derived heuristically and
do not necessarily describe the class of optimal designs. For the four-layer case, the
first few optimal values of the design parameter χ3,opt are displayed in Table 4.3. As
expected from (34) and (44), and seen in Tables 4.1 and 4.3, the optimal values χ3,opt

for the four-layer case are 22 = 4 times bigger than χ1,opt for the two-layer case.

Table 4.3

Proposed numerical values of the optimal (essential) base angle and design parameter for the
four-layer case.

j 2 3 4 5 6 7 8 9 10
θ1,opt π/4 π/6 π/8 π/10 π/12 π/14 π/16 π/18 π/20

χ3,opt 8 16 27.314 41.888 59.713 80.783 105.096 132.654 163.454
from (44)

Similar to the three-layer case, based on (44), one can create many designs with
amplitude 2p for the four-layer case. Once the value of α1 is selected, a large enough
optimal value of the design parameter χ3,opt is selected from (44), so that the values
of the remaining parameters, determined as α3 = 1

α1
and α2 = χ3,opt

(1+α1)(1+α3)
− 1, are
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Fig. 8. Stress time history for the first two layers of a four-layered design with a maximum

stress amplitude of double the loading p = 1. Here j = 10, χ3,opt = 23

1−cos( π
j
)
, α1 = 3, and

α3 = 1
α1

= 1
3
. (a) Middle of the first layer located at ξ = τ/8. (b) Middle of the second layer located

at ξ = 3τ/8.

reasonable and positive. For example, for α1 = 3, j = 10, and χ3,opt = 8
1−cos( π

j ) =
8

1−cos( π
10 ) ≈ 163.454, we can then make the appropriate material selection by choosing

the impedance ratios α3 = 1/α1 = 1/3 and α2 = χ3,opt

(1+α1)·(1+α3)
− 1 ≈ 29.647. The

length of each layer is adjusted according to the material properties, in order to
provide equal wave travel time. The stress history for this design is displayed in
Figure 8. Notice the periodicity of the stress wave, while the stress amplitude never
exceeds the value 2p. Based on the discussion on periodic solutions in section 2, the
values of the optimal base angle in (43) imply that the stress sequences si(n), for
a given i = 1, 2, 3, 4, are periodic functions with respect to n ≥ 0. Given the fact
that the essential base angle θ1,opt is of the form π/2j, the common period for the
stress sequences must be 4j, while the circular frequency is the essential base angle
π/2j. This agrees with the graphical output displayed in Figures 8(a) and (b). When
j = 10 the period is expected to be 4 ·10 = 40; i.e., there are forty terms of each stress
sequence before the pattern repeats itself. A delay benefit on the stress amplitude is
also expected as the j index increases.

4.4. The multilayer case: Conjectures on periodic solutions with am-
plitude 2p. As seen from (33), (39), and (43), the first optimal set of angles for the
m-layer case is obtained when j = m and θ1,opt = π

m , for m = 2, 3, 4. Notice the
regular geometrical pattern of the optimal angle/root distribution on the unit circle
displayed in Figure 9. Substituting into (45) the first set of optimal parameter values
obtained for j = m when m = 2, 3, 4 reduces it to |Am| = zm + 1 = 0, as expected.
One can easily check that this class of optimal parameters with χm−1,opt = 2m−1

includes the homogeneous design obtained for α1 = α2 = · · · = αm−1 = 1 . We
generalize the above observations with the following conjecture.

Conjecture 1. For the initial-boundary value problem discussed in this paper
and a given integer m ≥ 1, there are optimal m-layered designs, other than the homo-
geneous, for which |Am| = zm + 1 = 0 and χm−1 = 2m−1. The roots of this equation
are vertices of a regular m-gon, while the essential base angle/root is θ1 = π/m. The
stress sequences si(n), i = 1, 2, . . . , m, are expected to be periodic with respect to n ≥ 0
and share the same (integer) period. The maximum amplitude of the stress sequences
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Fig. 9. Optimal angles derived from the roots of zm = −1 for the m-layer case, m = 2, 3, 4.

3m

/3

/3

/5

/5

/7

/7

0

2m

/2

/2

/3

/3

/4

/4

0

4m

/4

/4

/4

/4

/6

/6

/6

/6

/8

/8

/8

/8
0

Fig. 10. Optimal angle distribution for the m-layer case, m = 2, 3, 4.

is expected to be double the loading p.
In Figure 10 we display the complete set of the optimal angles for the m-layer

case obtained from (33), (39), and (43) when j ≥ m and m = 2, 3, 4. As we know,
the four- and five-layer cases have two base angles.2 Looking at the positioning and
convergence tendency towards zero of these angles, we conjecture the following.

Conjecture 2. For the m = 5 layer case, the sets of angles {π,±π/(2j +
1),±(2j − 1)π/(2j + 1)} for j ≥ 2, combined with the necessary conditions (28)
and other suitable base angle and design parameter relations, may generate (optimal)
designs with maximum stress amplitude double the loading p. The stress sequences
si(n), i = 1, 2, . . . , m, are expected to be periodic with respect to n ≥ 0 and share the
same integer period, while χm−1 ≥ 2m−1.

As an application of Conjecture 2, we display in Figure 11 the stress history for
a five-layered (optimal) design with maximum amplitude double the loading. The
process of finding the numerical values of the (optimal) impedance ratios is described
below. The design parameters χ4 and Γ4 are defined in terms of the impedance ratios
as χ4 = (1 + α1)(1 + α2)(1 + α3)(1 + α4) and Γ4 = (α1α3α4 + α1α2α4 + α1α4 +
α2α4 + α1α3 − 1). From the necessary conditions (28) we can also express the design
parameters χ4 and Γ4 in terms of the base angles: χ4 = 4

1−cosθ1−cosθ2+cosθ1·cosθ2
and

2Relation (41) between the two optimal base angles for m = 4 illustrated in Figure 10 explains
why heuristic condition Γ3 = α1α3 − 1 = 0 in subsection 4.3 worked.
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Fig. 11. Stress time history for the first and last layers of a five-layered design. Here the
maximum stress amplitude is double the loading p = 1, while j = 2, θ1 = π/(2j + 1) = π/7, α3 = 2,
α4 = 1/α3 = 0.5. (a) Middle of the first layer located at ξ = τ/10. (b) Middle of the last layer
located at ξ = 9τ/10.

Γ4 = 2(cosθ1+cosθ2)
1−cosθ1−cosθ2+cosθ1·cosθ2

. Substituting into the two different representations for
χ4 and Γ4 the chosen values for α3 = 2 and α4 = 1/α3 = 0.5, and the assumed
values for the base angles obtained for j = 3, θ1 = π/(2j + 1) = π/7 and θ2 =
(2j − 1)π/(2j + 1) = 5π/7, we get a system of two equations and two unknowns
α1 and α2. As a result we recover the numerical values used for α1 ≈ 0.7291 and
α2 ≈ 2.1974.

A general pattern of convergence of the base angles for the m-layered optimal
designs with the smallest stress amplitude is yet to be found.

5. Applications of the optimality results. The properties of the materials
used in this section are included in the appendix. Using the definition of the wave
speed c =

√
E/ρ, the characteristic impedance ρc in each layer is calculated in terms

of the material properties as
√

Eρ.

5.1. Multiple optimal material designs.
The two-layer case. According to (17), for a given value of the base angle θ1 there

is a unique corresponding value of χ1 = 1 + α1 and impedance ratio α1 as a result.
Furthermore, as shown in (33)–(34), optimal values of the base angle θ1,opt generate
optimal values for the design parameters χ1,opt and α1,opt. When it comes to creating
an optimal material design, this means that once one material is chosen for either layer,
the properties of the material for the remaining layer are determined from the values
of α1,opt. In other words, the optimal material selection has one degree of freedom.
As for the length of each layer, it is adjusted according to the material properties in
order to provide equal wave travel time: L1

c1
= L2

c2
or L1

L2
=

√
E1
ρ1

· ρ2
E2

. Here Li, ci,
Ei, and ρi, i = 1, 2, represent the length, wave speed, elastic modulus, and material
density for the ith layer, respectively. For instance, if tungsten alloy is the material
occupying the first layer, then the optimality condition χ1,opt = 2

1−cos(π/4) ≈ 6.828
or α1,opt ≈ 5.828 is satisfied if the material in the second layer is lead. A different
optimal value of χ1,opt ≈ 33.163, or equivalently α1,opt ≈ 32.163, is reached if the
material in the second layer is copper alloy.

The three-layer case. Based on (19), for a given value of the base angle θ1, there
is a unique corresponding value of χ2 = (1 + α1)(1 + α2). Furthermore, as shown in
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(39)–(40), optimal values of the base angle θ1,opt generate optimal values for the design
parameters χ2,opt. From (40), one can conclude that for a fixed value of α1 there are
infinitely many optimal designs. For a fixed value of χ2,opt there are infinitely many
optimal designs as well. The order of the impedance ratios does not matter; i.e., if
α1 = α and α2 = β represent an optimal design, α1 = β and α2 = α represent an
optimal design as well. The curves in Figure 6 confirm this expectation. Once the
materials occupying the first two consecutive layers are selected, the value of α1 is
determined. The value of α2 and the third material properties are then derived from
the optimality conditions (40) for any value of χ2,opt/(1 + α1) > 1. Therefore when
it comes to choosing optimal material design for the three-layer case, we have two
degrees of freedom for material selection.

For instance, once we choose aluminum alloy and steel to occupy the first and sec-
ond layer, respectively, the impedance ratio α1 ≈ .331. Seeking values of χ2,opt so that
χ2,opt/(1 + α1) > 1, we choose χ2,opt ≈ 10.472 and find the resulting impedance ratio
α2 = χ2,opt

(1+α1)
− 1 ≈ 6.869; see Table 4.2 and relation (40). From here we may choose

various materials to occupy the third layer, one of them the glass fiber reinforced ma-
terial. Theoretically, there are infinitely many optimal values with χ2,opt/(1+α1) > 1
generated from (40) which provide even more (infinitely many) choices for the third
material selection. Figure 6 illustrates the infinitely many choices for the optimal
pairs (α1, α2).

The four-layer case. In a similar fashion, based on (44) one can create multiple
four-layer designs which are optimal. For instance, the homogeneous (optimal) design
with α1 = α2 = α3 = 1 shares the same value of χ3,opt = (1 + α1)(1 + α2)(1 + α3) =
23 = 8 with the nonhomogeneous (optimal) design with α1 = 2.5, α3 = 1/α1 = 0.4,
and α2 = χ3,opt

(1+α1)(1+α3)
− 1 ≈ 0.633. An optimal material selection for the four-layer

case has two degrees of freedom.
Generally, it is important to mention that there is a potential gap between the

theoretical predictions and what can be achieved practically. Some of the material
properties required to create an optimal design might not correspond to an actual
(elastic) material. Also, since the properties of the materials selected might have a
slight deviation from the optimal values theoretically required, the designs created
will be almost optimal.

5.2. Design improvement: Making a nonoptimal design optimal. One of
the benefits of the optimality results for the layered strip is that they provide multiple
options for optimal designs. This allows us to make an existing nonoptimal design
optimal by adding or removing a (side) layer.

Reinterpreting the results discussed in the previous subsection, a nonoptimal two-
layer strip can become optimal by adding a third layer with material properties deter-
mined by relations (40). Indeed, the aluminum-steel configuration for a two-layered
design has an impedance ratio of α1 ≈ .331, and therefore χ1 = 1 + α1 ≈ 1.331.
According to (34), this is a nonoptimal value for a two-layered Goupillaud-type strip.
By adding a third layer of glass fiber reinforced material so that α2 ≈ 6.869 and
therefore χ2 ≈ 10.472, according to (40), we obtain a nearly optimal configuration of
three layers where χ2,opt = 2

1−cos(π/5) ≈ 10.472. The layer lengths are chosen so that
they provide an equal wave travel time.

On the other hand, a three-layer design with tungsten-lead-aluminum configu-
ration has impedance ratios α1 ≈ 5.828, α2 ≈ 0.952, and the nonoptimal design
parameter χ2 = (1 + α1)(1 + α2) ≈ 13.33; see Table 4.2 and (40). However, after we
remove the aluminum alloy, the tungsten-lead combination with χ1 = 1 + α1 = 6.828
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is an optimal design for the two-layer case.
Furthermore, an almost optimal four-layer configuration can be obtained by

adding another layer as the first layer to the nonoptimal tungsten-lead-aluminum
configuration with α1 = 1/α3, α2 ≈ 5.828, and α3 ≈ 0.952. The design parameter
χ3 = (1 + α1)(1 + α2)(1 + α3) ≈ 27.32 is close to the proposed (optimal) value of
χ3,opt = 8

1−cos(π/4) ≈ 27.314; see (44) and Table 4.3.
Due to the round-off errors between the analytical predictions of the optimal

design parameters and their calculated values, the material designs proposed here and
created in practice are expected to be almost optimal. Our numerical experiments
confirm stability in their behavior.

5.3. Optimization results for layered media with integer layer length
ratios. The optimality results for Goupillaud-type layered media given in (40), (44)
may be extended to non-Goupillaud-type layered media with integer layer length
ratios. For instance, the optimality results in (40) for Goupillaud-type three-layered
media can be extended to a non-Goupillaud-type two-layered media with 1:2 or 2:1
wave travel time ratios. The case with 1:2 ratio requires that α2 = 1 and α1,opt =

cos π
2j+1

1−cos π
2j+1

, while the case with 2:1 ratio requires that α1 = 1 and α2,opt =
cos π

2j+1
1−cos π

2j+1

for j ≥ 1.
Similarly, the proposed optimality conditions (44) for the Goupillaud-type four-

layered media can be extended to three-layered media with wave travel time ratios
1:2:1 by choosing α2 = 1, α3 = 1/α1, and (1 + α1)(1 + α3) = 4

1−cos(π/j) for j ≥ 2.

6. Summary and future work. A system of recursion relations that describe
stress wave propagation in a multilayered Goupillaud-type elastic strip was derived.
The system of equations was transformed using the z-transform method and written
in a tridiagonal global matrix form. The determinant of the resulting global matrix
was palindromic in nature. Under the assumption that the zeros of such a palindromic
polynomial lie on the unit circle, we uniquely identified them by their angle measure.
As a result, for an m-layered design there are m distinct angles: {±θk}

m
2

k=1 when m is
even and θ0 = π, {±θk}�

m
2 �

k=1 when m is odd. These correspond to their distinct complex
conjugate roots on the unit circle. The angles 0 < θk < π for k = 1, . . . , �m

2 � were
known as the base angles. The stress wave propagation for the m-layered Goupillaud-
type media was described in (14) by finite trigonometric series involving multiples of
the base angles θ1, θ2, . . . , θ�m

2 �. Formula (14) indicated that each stress term is a
factor of the loading parameter p.

Necessary conditions for the base angles and design parameters for any given
m-layered design were described. These conditions and the stress values found were
affected only by �m

2 � base angles and the same number of suitable design parameters.
The necessary conditions proved to be especially important for the designs of four or
more layers for which we did not have the stress solutions. Substituting the optimal
values of the base angles into the necessary conditions, combined with other suitable
design parameter values, helped us identify sets of (optimal) designs with maximum
stress amplitude of double the loading. The optimization results suggested regular
distribution patterns of the optimal base angles. The stress sequences corresponding
to optimal designs were periodic, shared the same period, and had nonnegative stress
values for a positive/unit loading p. The applications of the optimality results dis-
cussed in section 5 were limited by the practical consideration of physically realizable
values for the layer impedances. More work remains to be done in recovering optimal
designs for the general case of m-layers.
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Appendix.

A.1. Material properties. The elastic modulus E and density ρ of the mate-
rials used (see [1]) are as follows:

• Aluminum alloy: E = 70 GPa and ρ = 2, 500 kg/m3,
• Copper alloy: E = 10 GPa and ρ = 521.3 kg/m3,
• Glass fiber reinforced material: E = 30 GPa and ρ = 1, 130 kg/m3,
• Lead: E = 14 GPa and ρ = 11, 340 kg/m3,
• Tungsten alloy: E = 275 GPa and ρ = 19, 610 kg/m3,
• Steel: E = 200 GPa and ρ = 8, 000 kg/m3.

A.2. The determinant of the tridiagonal matrix Am. The determinant
of the tridiagonal matrix Am, given in (8), can be calculated using the formula
[Am| = (z + 1)|A{1,...,m−1}| − ηmαm−1ηm−1z|A{1,...,m−2}|. Here |A{1,...,l}| denotes
the lth principal minor; that is, A{1,...,l} is the submatrix created by the first l rows
and columns of Am. The determinants |Am| for 1 ≤ m ≤ 5, are given in (45):

|A1| = z + 1,

|A2| = (z + 1)2 − η2η1α1z = z2 − 2(χ1 − 2)
χ1

z + 1,

|A3| = (z + 1)|A{1,2}| − η3α2η2z|A{1}| = (z + 1) ·
[
z2 − 2(χ2 − 2)

χ2
z + 1

]
,

|A4| = (z + 1)|A{1,2,3}| − η4α3η3z|A{1,2}|(45)

= z4 − 4Γ3

χ3
z3 +

2(4Γ3 − χ3 + 8)
χ3

z2 − 4Γ3

χ3
z + 1,

|A5| = (z + 1)|A{1,2,3,4}| − η5α4η4z|A{1,2,3}|

= (z + 1) ·
[
z4 − 4Γ4

χ4
z3 +

2(4Γ4 − χ4 + 8)
χ4

z2 − 4Γ4

χ4
z + 1

]
.

Here χ3 = (1+α1)(1+α2)(1+α3), Γ3 = (α1α3−1), χ4 = (1+α1)(1+α2)(1+α3)(1+α4),
and Γ4 = (α1α3α4 + α1α2α4 + α1α4 + α2α4 + α1α3 − 1).
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